
The End of an Architectural Era
(It’s Time for a Complete Rewrite)

Michael Stonebraker

Samuel Madden
Daniel J. Abadi

Stavros Harizopoulos
MIT CSAIL

{stonebraker, madden, dna,
stavros}@csail.mit.edu

Nabil Hachem
AvantGarde Consulting, LLC

nhachem@agdba.com

Pat Helland
Microsoft Corporation

phelland@microsoft.com

ABSTRACT
In previous papers [SC05, SBC+07], some of us predicted the end
of “one size fits all” as a commercial relational DBMS paradigm.
These papers presented reasons and experimental evidence that
showed that the major RDBMS vendors can be outperformed by
1-2 orders of magnitude by specialized engines in the data
warehouse, stream processing, text, and scientific database
markets.
Assuming that specialized engines dominate these markets over
time, the current relational DBMS code lines will be left with the
business data processing (OLTP) market and hybrid markets
where more than one kind of capability is required. In this paper
we show that current RDBMSs can be beaten by nearly two
orders of magnitude in the OLTP market as well. The
experimental evidence comes from comparing a new OLTP
prototype, H-Store, which we have built at M.I.T. to a popular
RDBMS on the standard transactional benchmark, TPC-C.

We conclude that the current RDBMS code lines, while
attempting to be a “one size fits all” solution, in fact, excel at
nothing. Hence, they are 25 year old legacy code lines that should
be retired in favor of a collection of “from scratch” specialized
engines. The DBMS vendors (and the research community)
should start with a clean sheet of paper and design systems for
tomorrow’s requirements, not continue to push code lines and
architectures designed for yesterday’s needs.

1. INTRODUCTION
The popular relational DBMSs all trace their roots to System R
from the 1970s. For example, DB2 is a direct descendent of
System R, having used the RDS portion of System R intact in
their first release. Similarly, SQL Server is a direct descendent of
Sybase System 5, which, borrowed heavily from System R.
Lastly, the first release of Oracle implemented the user interface

from System R.

All three systems were architected more than 25 years ago, when
hardware characteristics were much different than today.
Processors are thousands of times faster and memories are
thousands of times larger. Disk volumes have increased
enormously, making it possible to keep essentially everything, if
one chooses to. However, the bandwidth between disk and main
memory has increased much more slowly. One would expect this
relentless pace of technology to have changed the architecture of
database systems dramatically over the last quarter of a century,
but surprisingly the architecture of most DBMSs is essentially
identical to that of System R.

Moreover, at the time relational DBMSs were conceived, there
was only a single DBMS market, business data processing. In the
last 25 years, a number of other markets have evolved, including
data warehouses, text management, and stream processing. These
markets have very different requirements than business data
processing.

Lastly, the main user interface device at the time RDBMSs were
architected was the dumb terminal, and vendors imagined
operators inputting queries through an interactive terminal
prompt. Now it is a powerful personal computer connected to the
World Wide Web. Web sites that use OLTP DBMSs rarely run
interactive transactions or present users with direct SQL
interfaces.

In summary, the current RDBMSs were architected for the
business data processing market in a time of different user
interfaces and different hardware characteristics. Hence, they all
include the following System R architectural features:

 Disk oriented storage and indexing structures
 Multithreading to hide latency
 Locking-based concurrency control mechanisms
 Log-based recovery

Of course, there have been some extensions over the years,
including support for compression, shared-disk architectures,
bitmap indexes, support for user-defined data types and operators,
etc. However, no system has had a complete redesign since its
inception. This paper argues that the time has come for a
complete rewrite.

A previous paper [SBC+07] presented benchmarking evidence
that the major RDBMSs could be beaten by specialized

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1150

architectures by an order of magnitude or more in several
application areas, including:

 Text (specialized engines from Google, Yahoo, etc.)
 Data Warehouses (column stores such as Vertica, Monet

[Bon02], etc.)
 Stream Processing (stream processing engines such as

StreamBase and Coral8)
 Scientific and intelligence databases (array storage engines

such as MATLAB and ASAP [SBC+07])

Based on this evidence, one is led to the following conclusions:

1) RDBMSs were designed for the business data processing
market, which is their sweet spot

2) They can be beaten handily in most any other market of
significant enough size to warrant the investment in a
specialized engine

This paper builds on [SBC+07] by presenting evidence that the
current architecture of RDBMSs is not even appropriate for
business data processing. Our methodology is similar to the one
employed in [SBC+07]. Specifically, we have designed a new
DBMS engine for OLTP applications. Enough of this engine, H-
Store, is running to enable us to conduct a performance bakeoff
between it and a popular commercial RDBMSs. Our
experimental data shows H-Store to be a factor of 82 faster on
TPC-C (almost two orders of magnitude).

Because RDBMSs can be beaten by more than an order of
magnitude on the standard OLTP benchmark, then there is no
market where they are competitive. As such, they should be
considered as legacy technology more than a quarter of a century
in age, for which a complete redesign and re-architecting is the
appropriate next step.
Section 2 of this paper explains the design considerations that can
be exploited to achieve this factor of 82 on TPC-C. Then, in
Section 3, we present specific application characteristics which
can be leveraged by a specialized engine. Following that, we
sketch some of the H-store design in Section 4. We then proceed
in Section 5 to present experimental data on H-Store and a
popular RDBMS on TPC-C. We conclude the paper in Section 6
with some radical suggestions for the research agenda for the
DBMS community.

2. OLTP Design Considerations
This section presents five major issues, which a new engine such
as H-Store can leverage to achieve dramatically better
performance than current RDBMSs.

2.1 Main Memory
In the late 1970’s a large machine had somewhere around a
megabyte of main memory. Today, several Gbytes are common
and large machines are approaching 100 Gbytes. In a few years a
terabyte of main memory will not be unusual. Imagine a shared
nothing grid system of 20 nodes, each with 32 Gbytes of main
memory now, (soon to be 100 Gbytes), and costing less than
$50,000. As such, any database less than a terabyte in size, is
capable of main memory deployment now or in the near future.

The overwhelming majority of OLTP databases are less than 1
Tbyte in size and growing in size quite slowly. For example, it is
a telling statement that TPC-C requires about 100 Mbytes per
physical distribution center (warehouse). A very large retail
enterprise might have 1000 warehouses, requiring around 100

Gbytes of storage, which fits our envelope for main memory
deployment.

As such, we believe that OLTP should be considered a main
memory market, if not now then within a very small number of
years. Consequently, the current RDBMS vendors have disk-
oriented solutions for a main memory problem. In summary, 30
years of Moore’s law has antiquated the disk-oriented relational
architecture for OLTP applications.
Although there are some main memory database products on the
market, such as TimesTen and SolidDB, these systems inherit the
baggage of System R as well. This includes such features as a
disk-based recovery log and dynamic locking, which, as we
discuss in the following sections, impose substantial performance
overheads.

2.2 Multi-threading and Resource Control
OLTP transactions are very lightweight. For example, the
heaviest transaction in TPC-C reads about 200 records. In a main
memory environment, the useful work of such a transaction
consumes less than one millisecond on a low-end machine. In
addition, most OLTP environments we are familiar with do not
have “user stalls”. For example, when an Amazon user clicks
“buy it”, he activates an OLTP transaction which will only report
back to the user when it finishes. Because of an absence of disk
operations and user stalls, the elapsed time of an OLTP
transaction is minimal. In such a world it makes sense to run each
SQL command in a transaction to completion with a single-
threaded execution model, rather than paying for the overheads of
isolation between concurrently executing statements.

Current RDBMSs have elaborate multi-threading systems to try to
fully utilize CPU and disk resources. This allows several-to-many
queries to be running in parallel. Moreover, they also have
resource governors to limit the multiprogramming load, so that
other resources (IP connections, file handles, main memory for
sorting, etc.) do not become exhausted. These features are
irrelevant in a single threaded execution model. No resource
governor is required in a single threaded system.
In a single-threaded execution model, there is also no reason to
have multi-threaded data structures. Hence the elaborate code
required to support, for example, concurrent B-trees can be
completely removed. This results in a more reliable system, and
one with higher performance.

At this point, one might ask “What about long running
commands?” In real-world OLTP systems, there aren’t any for
two reasons: First, operations that appear to involve long-running
transactions, such as a user inputting data for a purchase on a web
store, are usually split into several transactions to keep transaction
time short. In other words, good application design will keep
OLTP queries small. Second, longer-running ad-hoc queries are
not processed by the OLTP system; instead such queries are
directed to a data warehouse system, optimized for this activity.
There is no reason for an OLTP system to solve a non-OLTP
problem. Such thinking only applies in a “one size fits all” world.

2.3 Grid Computing and Fork-lift Upgrades
Current RDBMSs were originally written for the prevalent
architecture of the 1970s, namely shared-memory
multiprocessors. In the 1980’s shared disk architectures were
spearheaded by Sun and HP, and most DBMSs were expanded to
include capabilities for this architecture. It is obvious that the

1151

next decade will bring domination by shared-nothing computer
systems, often called grid computing or blade computing. Hence,
any DBMS must be optimized for this configuration. An obvious
strategy is to horizontally partition data over the nodes of a grid, a
tactic first investigated in Gamma [DGS+90].

In addition, no user wants to perform a “fork-lift” upgrade.
Hence, any new system should be architected for incremental
expansion. If N grid nodes do not provide enough horsepower,
then one should be able to add another K nodes, producing a
system with N+K nodes. Moreover, one should perform this
upgrade, without a hiccup, i.e. without taking the DBMS down.
This will eliminate every system administrator’s worst nightmare;
a fork-lift upgrade with a requirement for a complete data reload
and cutover.

To achieve incremental upgrade without going down requires
significant capabilities, not found in existing systems. For
example, one must be able to copy portions of a database from
one site to another without stopping transactions. It is not clear
how to bolt such a capability onto most existing systems.
However, this can be made a requirement of a new design and
implemented efficiently, as has been demonstrated by the
existence of exactly this feature in the Vertica1 codeline.

2.4 High Availability
Relational DBMSs were designed in an era (1970s) when an
organization had a single machine. If it went down, then the
company lost money due to system unavailability. To deal with
disasters, organizations typically sent log tapes off site. If a
disaster occurred, then the hardware vendor (typically IBM)
would perform heroics to get new hardware delivered and
operational in small numbers of days. Running the log tapes then
brought the system back to something approaching where it was
when the disaster happened.

A decade later in the 1980’s, organizations executed contracts
with disaster recovery services, such as Comdisco, for backup
machine resources, so the log tapes could be installed quickly on
remote backup hardware. This strategy minimized the time that
an enterprise was down as a result of a disaster.

Today, there are numerous organizations that run a hot standby
within the enterprise, so that real-time failover can be
accomplished. Alternately, some companies run multiple primary
sites, so failover is even quicker. The point to be made is that
businesses are much more willing to pay for multiple systems in
order to avoid the crushing financial consequences of down time,
often estimated at thousands of dollars per minute.

In the future, we see high availability and built-in disaster
recovery as essential features in the OLTP (and other) markets.
There are a few obvious conclusions to be drawn from this
statement. First, every OLTP DBMS will need to keep multiple
replicas consistent, requiring the ability to run seamlessly on a
grid of geographically dispersed systems.
Second, most existing RDBMS vendors have glued multi-machine
support onto the top of their original SMP architectures. In
contrast, it is clearly more efficient to start with shared-nothing
support at the bottom of the system.

Third, the best way to support shared nothing is to use multiple
machines in a peer-to-peer configuration. In this way, the OLTP

1 http://www.vertica.com

load can be dispersed across multiple machines, and inter-
machine replication can be utilized for fault tolerance. That way,
all machine resources are available during normal operation.
Failures only cause degraded operation with fewer resources. In
contrast, many commercial systems implement a “hot standby”,
whereby a second machine sits effectively idle waiting to take
over if the first one fails. In this case, normal operation has only
half of the resources available, an obviously worse solution.
These points argue for a complete redesign of RDBMS engines so
they can implement peer-to-peer HA in the guts of a new
architecture.

In an HA system, regardless of whether it is hot-standby or peer-
to-peer, logging can be dramatically simplified. One must
continue to have an undo log, in case a transaction fails and needs
to roll back. However, the undo log does not have to persist
beyond the completion of the transaction. As such, it can be a
main memory data structure that is discarded on transaction
commit. There is never a need for redo, because that will be
accomplished via network recovery from a remote site. When the
dead site resumes activity, it can be refreshed from the data on an
operational site.

A recent paper [LM06] argues that failover/rebuild is as efficient
as redo log processing. Hence, there is essentially no downside to
operating in this manner. In an HA world, one is led to having no
persistent redo log, just a transient undo one. This dramatically
simplifies recovery logic. It moves from an Aries-style
[MHL+92] logging system to new functionality to bring failed
sites up to date from operational sites when they resume
operation.

Again, a large amount of complex code has been made obsolete,
and a different capability is required.

2.5 No Knobs
Current systems were built in an era where resources were
incredibly expensive, and every computing system was watched
over by a collection of wizards in white lab coats, responsible for
the care, feeding, tuning and optimization of the system. In that
era, computers were expensive and people were cheap. Today we
have the reverse. Personnel costs are the dominant expense in an
IT shop.

As such “self-everything” (self-healing, self-maintaining, self-
tuning, etc.) systems are the only answer. However, all RDBMSs
have a vast array of complex tuning knobs, which are legacy
features from a bygone era. True; all vendors are trying to
provide automatic facilities which will set these knobs without
human intervention. However, legacy code cannot ever remove
features. Hence, “no knobs” operation will be in addition to
“human knobs” operation, and result in even more system
documentation. Moreover, at the current time, the automatic
tuning aids in the RDBMSs that we are familiar with do not
produce systems with anywhere near the performance that a
skilled DBA can produce. Until the tuning aids get vastly better
in current systems, DBAs will turn the knobs.

A much better answer is to completely rethink the tuning process
and produce a new system with no visible knobs.

1152

3. Transaction, Processing and Environment
Assumptions
If one assumes a grid of systems with main memory storage, built-
in high availability, no user stalls, and useful transaction work
under 1 millisecond, then the following conclusions become
evident:

1) A persistent redo log is almost guaranteed to be a significant
performance bottleneck. Even with group commit, forced
writes of commit records can add milliseconds to the runtime
of each transaction. The HA/failover system discussed
earlier dispenses with this expensive architectural feature.

2) With redo gone, getting transactions into and out of the
system is likely to be the next significant bottleneck. The
overhead of JDBC/ODBC style interfaces will be onerous,
and something more efficient should be used. In particular,
we advocate running application logic – in the form of stored
procedures – “in process” inside the database system, rather
than the inter-process overheads implied by the traditional
database client / server model.

3) An undo log should be eliminated wherever practical, since it
will also be a significant bottleneck.

4) Every effort should be made to eliminate the cost of
traditional dynamic locking for concurrency control, which
will also be a bottleneck.

5) The latching associated with multi-threaded data structures is
likely to be onerous. Given the short runtime of transactions,
moving to a single threaded execution model will eliminate
this overhead at little loss in performance.

6) One should avoid a two-phase commit protocol for
distributed transactions, wherever possible, as network
latencies imposed by round trip communications in 2PC
often take on the order of milliseconds.

Our ability to remove concurrency control, commit processing
and undo logging depends on several characteristics of OLTP
schemas and transaction workloads, a topic to which we now turn.

3.1 Transaction and Schema Characteristics
H-Store requires the complete workload to be specified in
advance, consisting of a collection of transaction classes. Each
class contains transactions with the same SQL statements and
program logic, differing in the run-time constants used by
individual transactions. Since there are assumed to be no ad-hoc
transactions in an OLTP system, this does not appear to be an
unreasonable requirement. Such transaction classes must be
registered with H-Store in advance, and will be disallowed if they
contain user stalls (transactions may contain stalls for other
reasons – for example, in a distributed setting where one machine
must wait for another to process a request.) Similarly, H-Store
also assumes that the collection of tables (logical schema) over
which the transactions operate is known in advance.

We have observed that in many OLTP workloads every table
except a single one called the root, has exactly one join term
which is a 1-n relationship to its ancestor. Hence, the schema is a
tree of 1-n relationships. We denote this class of schemas as tree
schemas. Such schemas are popular; for example, customers
produce orders, which have line items and fulfillment schedules.
Tree schemas have an obvious horizontal partitioning over the
nodes in a grid. Specifically, the root table can be range or hash
partitioned on the primary key(s). Every descendent table can be
partitioned such that all equi-joins in the tree span only a single

site. In the discussion to follow, we will consider both tree and
non-tree schemas.

In a tree schema, suppose every command in every transaction
class has equality predicates on the primary key(s) of the root
node (for example, in an e-commerce application, many
commands will be rooted with a specific customer, so will include
predicates like customer_id = 27). Using the horizontal
partitioning discussed above, it is clear that in this case every SQL
command in every transaction is local to one site. If, in addition,
every command in each transaction class is limited to the same
single site, then we call the application a constrained tree
application (CTA). A CTA application has the valuable feature
that every transaction can be run to completion at a single site.
The value of such single-sited transactions, as will be discussed in
Section 4.3, is that transactions can execute without any stalls for
communication with another grid site (however, in some cases,
replicas will have to synchronize so that transactions are executed
in the same order).

If every command in every transaction of a CTA specifies an
equality match on the primary key(s) of one or more direct
descendent nodes in addition to the equality predicate on the root,
then the partitioning of a tree schema can be extended
hierarchically to include these direct descendent nodes. In this
case, a finer granularity partitioning can be used, if desired.

CTAs are an important class of single-sited applications which
can be executed very efficiently. Our experience with many years
of designing database applications in major corporations suggests
that OLTP applications are often designed explicitly to be CTAs,
or that decompositions to CTAs are often possible [Hel07].
Besides simply arguing that CTAs are prevalent, we are also
interested in techniques that can be used to make non-CTA
applications single-sited; it is an interesting research problem to
precisely characterize the situations in which this is possible. We
mention two possible schema transformations that can be
systematically applied here.

First, consider all of the read-only tables in the schema, i.e. ones
which are not updated by any transaction class. These tables can
be replicated at all sites. If the application becomes CTA with
these tables removed from consideration, then the application
becomes single-sited after replication of the read-only tables.
Another important class of applications are one-shot. These
applications have the property that all of their transactions can be
executed in parallel without requiring intermediate results to be
communicated among sites. Moreover, the result of previous
SQL queries are never required in subsequent commands. In this
case, each transaction can be decomposed into a collection of
single-site plans which can be dispatched to the appropriate sites
for execution.

Applications can often be made one-shot with vertical partitioning
of tables amongst sites (columns that are not updated are
replicated); this is true of TPC-C, for example (as we discuss in
Section 5.)

Some transaction classes are two-phase (or can be made to be two
phase.) In phase one there are a collection of read-only
operations. Based on the result of these queries, the transaction
may be aborted. Phase two then consists of a collection of queries
and updates where there can be no possibility of an integrity
violation. H-Store will exploit the two-phase property to

1153

eliminate the undo log. We have observed that many transactions,
including those in TPC-C, are two-phase.

A transaction class is strongly two-phase if it is two-phase and
additionally has the property that phase 1 operations on all
replicas result in all replica sites aborting or all continuing.

Additionally, for every transaction class, we find all other classes
whose members commute with members of the indicated class.
Our specific definition of commutativity is:

Two concurrent transactions from the same or different
classes commute when any interleaving of their single-site
sub-plans produces the same final database state as any other
interleaving (assuming both transactions commit).

A transaction class which commutes with all transaction classes
(including itself) will be termed sterile.

We use single-sited, sterile, two-phase, and strong two-phase
properties in the H-Store algorithms, which follow. We have
identified these properties as being particularly relevant based on
our experience with major commercial online retail applications,
and are confident that they will be found in many real world
environments.

4. H-Store Sketch
In this section, we describe how H-Store exploits the previously
described properties to implement a very efficient OLTP database.

4.1 System Architecture
H-Store runs on a grid of computers. All objects are partitioned
over the nodes of the grid. Like C-Store [SAB+05], the user can
specify the level of K-safety that he wishes to have.

At each site in the grid, rows of tables are placed contiguously in
main memory, with conventional B-tree indexing. B-tree block
size is tuned to the width of an L2 cache line on the machine
being used. Although conventional B-trees can be beaten by
cache conscious variations [RR99, RR00], we feel that this is an
optimization to be performed only if indexing code ends up being
a significant performance bottleneck.

Every H-Store site is single threaded, and performs incoming SQL
commands to completion, without interruption. Each site is
decomposed into a number of logical sites, one for each available
core. Each logical site is considered an independent physical site,
with its own indexes and tuple storage. Main memory on the
physical site is partitioned among the logical sites. In this way,
every logical site has a dedicated CPU and is single threaded.

In an OLTP environment most applications use stored procedures
to cut down on the number of round trips between an application
and the DBMS. Hence, H-Store has only one DBMS capability,
namely to execute a predefined transaction (transactions may be
issued from any site):

Execute transaction (parameter_list)
In the current prototype, stored procedures are written in C++,
though we have suggestions on better languages in Section 6. Our
implementation mixes application logic with direct manipulation
of the database in the same process; this provides comparable
performance to running the whole application inside a single
stored procedure, where SQL calls are made as local procedure
calls (not JDBC) and data is returned in a shared data array (again
not JDBC).

Like C-Store there is no redo log, and an undo log is written only
if required, as discussed in Section 4.4. If written, the undo log is
main memory resident, and discarded on transaction commit.

4.2 Query Execution
We expect to build a conventional cost-based query optimizer
which produces query plans for the SQL commands in transaction
classes at transaction definition time. We believe that this
optimizer can be rather simple, as 6 way joins are never done in
OLTP environments. If multi-way joins occur, they invariably
identify a unique tuple of interest (say a purchase order number)
and then the tuples that join to this record (such as the line items).
Hence, invariably one proceeds from an anchor tuple through a
small number of 1-to-n joins to the tuples of ultimate interest.
GROUP BY and aggregation rarely occur in OLTP environments.
The net result is, of course, a simple query execution plan.

The query execution plans for all commands in a transaction may
be:

Single-sited: In this case the collection of plans can be
dispatched to the appropriate site for execution.

One shot: In this case, all transactions can be decomposed
into a set of plans that are executed only at a single site.

General: In the general case, there will be commands which
require intermediate results to be communicated among sites
in the grid. In addition, there may be commands whose run-
time parameters are obtained from previous commands. In
this case, we need the standard Gamma-style run time model
of an execution supervisor at the site where the transaction
enters the system, communicating with workers at the sites
where data resides.

For general transactions, we compute the depth of the transaction
class to be the number of times in the collection of plans, where a
message must be sent between sites.

4.3 Database Designer
To achieve no-knobs operation, H-Store will build an automatic
physical database designer which will specify horizontal
partitioning, replication locations, and indexed fields.

In contrast to C-Store which assumed a world of overlapping
materialized views appropriate in a read-mostly environment, H-
Store implements the tables specified by the user and uses
standard replication of user-specified tables to achieve HA. Most
tables will be horizontally partitioned across all of the nodes in a
grid. To achieve HA, such table fragments must have one or
more buddies, which contain exactly the same information,
possibly stored using a different physical representation (e.g., sort
order).

The goal of the database designer is to make as many transaction
classes as possible single-sited. The strategy to be employed is
similar to the one used by C-Store [SAB+05]. That system
constructed automatic designs for the omnipresent star or
snowflake schemas in warehouse environments, and is now in the
process of generalizing these algorithms for schemas that are
“near snowflakes”. Similarly, H-Store will construct automatic
designs for the common case in OLTP environments (constrained
tree applications), and will use the previously mentioned strategy
of partitioning the database across sites based on the primary key
of the root table and assigning tuples of other tables to sites based
on root tuples they descend from. We will also explore
extensions, such as optimizations for read-only tables and vertical

1154

partitioning mentioned in Section 3. It is a research task to see
how far this approach can be pushed and how successful it will
be.

In the meantime, horizontal partitioning and indexing options can
be specified manually by a knowledgeable user.

4.4 Transaction Management, Replication
and Recovery
Since H-Store implements two (or more) copies of each table,
replicas must be transactionally updated. This is accomplished by
directing each SQL read command to any replica and each SQL
update to all replicas.
Moreover, every transaction receives a timestamp on entry to H-
Store, which consists of a (site_id, local_unique_timestamp) pair.
Given an ordering of sites, timestamps are unique and form a total
order. We assume that the local clocks which generate local
timestamps are kept nearly in sync with each other, using an
algorithm like NTP [Mil89].

There are multiple situations which H-Store leverages to
streamline concurrency control and commit protocols.

Single-sited/one shot: If all transaction classes are single-sited or
one-shot, then individual transaction can be dispatched to the
correct replica sites and executed to completion there. Unless all
transaction classes are sterile, each execution site must wait a
small period of time (meant to account for network delays) for
transactions arriving from other initiators, so that the execution is
in timestamp order. By increasing latency by a small amount, all
replicas will by updated in the same order; in a local area
network, maximum delays will be sub-millisecond. This will
guarantee the identical outcome at each replica. Hence, data
inconsistency between the replicas cannot occur. Also, all
replicas will commit or all replicas will abort. Hence, each
transaction can commit or abort locally, confident that the same
outcome will occur at the other replicas. There is no redo log, no
concurrency control, and no distributed commit processing.

Two-phase: No undo-log is required. Thus, if combined with the
above properties, no transaction facilities are required at all.

Sterile: If all transaction classes are sterile, then execution can
proceed normally with no concurrency control. Further, the need
to issue timestamps and execute transactions in the same order on
all replicas is obviated. However, if multiple sites are involved in
query processing, then there is no guarantee that all sites will
abort or all sites will continue. In this case, workers must respond
“abort” or “continue” at the end of the first phase, and the
execution supervisor must communicate this information to
worker sites. Hence, standard commit distributed processing must
be done at the end of phase one. This extra overhead can be
avoided if the transaction is strongly two-phase.

Other cases: For other cases (non-sterile, non-single-sited, non
one-shot), we need to endure the overhead of some sort of
concurrency control scheme. All RDBMSs we are familiar with
use dynamic locking to achieve transaction consistency. This
decision followed pioneering simulation work in the 1980’s
[ACL87] that showed that locking worked better than other
alternatives. However, we believe that dynamic locking is a poor
choice for H-Store for the following reasons:

1) Transactions are very short-lived. There are no user-stalls
and no disk activity. Hence, transactions are alive for very
short time periods. This favors optimistic methods over

pessimistic methods, like dynamic locking. Others, for
example architects and programming language designers
using transactions in memory models [HM93], have reached
the same conclusion.

2) Every transaction is decomposed into collections of sub-
commands, which are local to a given site. As noted earlier,
the collection of sub commands are run in a single threaded
fashion at each site. Again, this results in no latch waits,
smaller total execution times, and again favors more
optimistic methods.

3) We assume that we receive the entire collection of
transaction classes in advance. This information can be used
to advantage, as has been done previously by systems such as
the SDD-1 scheme from the 1970’s [BSR80] to reduce the
concurrency control overhead.

4) In a well designed system there are very few transaction
collisions and very very few deadlocks. These situations
degrade performance and the workload is invariably
modified by application designers to remove them. Hence,
one should design for the “no collision” case, rather than
using pessimistic methods.

The H-Store scheme takes advantage of these factors.
Every (non-sterile, non single-sited, non one-shot) transaction
class has a collection of transaction classes with which it might
conflict and arrives at some site in the grid and interacts with a
transaction coordinator at that site. The transaction coordinator
acts as the execution supervisor at the arrival site and sends out
the subplan pieces to the various sites. A worker site receives a
subplan and waits for the same small period of time mentioned
above for other possibly conflicting transactions with lower
timestamps to arrive. Then, the worker:

 Executes the subplan, if there is no uncommitted, potentially
conflicting transaction at his site with a lower timestamp, and
then sends his output data to the site requiring it, which may
be an intermediate site or the transaction coordinator.

 Issues an abort to the coordinator otherwise

If the coordinator receives an “ok” from all sites, it continues with
the transaction by issuing the next collection of subplans, perhaps
with C++ logic interspersed. If there are no more subplans, then it
commits the transaction. Otherwise, it aborts.

The above algorithm is the basic H-Store strategy. During
execution, a transaction monitor watches the percentage of
successful transactions. If there are too many aborts, H-Store
dynamically moves to the following more sophisticated strategy.

Before executing or aborting the subplan, noted above, each
worker site stalls by a length of time approximated by MaxD *
average_round_trip_message_delay to see if a subplan
with an earlier timestamp appears. If so, the worker site correctly
sequences the subplans, thereby lowering the probability of abort.
MaxD is the maximum depth of a conflicting transaction class.

This intermediate strategy lowers the abort probability, but at a
cost of some number of msecs of increased latency. We are
currently running simulations to demonstrate the circumstances
under which this results in improved performance.

Our last advanced strategy keeps track of the read set and write
set of each transaction at each site. In this case, a worker site runs
each subplan, and then aborts the subplan if necessary according
to standard optimistic concurrency control rules. At some extra
overhead in bookkeeping and additional work discarded on aborts,

1155

the probability of conflict can be further reduced. Again,
simulations are in progress to determine when this is a winning
strategy.
In summary, our H-Store concurrency control algorithm is:

 Run sterile, single-sited and one-shot transactions with no
controls

 Other transactions are run with the basic strategy

 If there are too many aborts, escalate to the intermediate
strategy

 If there are still too many aborts, further escalate to the
advanced strategy.

It should be noted that this strategy is a sophisticated optimistic
concurrency control scheme. Optimistic methods have been
extensively investigated previously [KR81, ACL87]. Moreover,
the Ants DBMS [Ants07] leverages commutativity to lower
locking costs. Hence, this section should be considered as a very
low overhead consolidation of known techniques.

Notice that we have not yet employed any sophisticated
scheduling techniques to lower conflict. For example, it is
possible to run examples from all pairs of transaction classes and
record the conflict frequency. Then, a scheduler could take this
information into account, and try to avoid running transactions
together with a high probability of conflict.

The next section shows how these techniques and the rest of the
H-Store design works on TPC-C.

5. A Performance Comparison
TPC-C runs on the schema diagramed in Figure 1, and contains 5
transaction classes (new_order, payment, order
status, delivery and stock_level).

Because of space limitations, we will not include the code for
these transactions; the interested reader is referred to the TPC-C
specification [TPCC]. Table 1 summarizes their behavior.

Figure 1: TPC-C Schema (reproduced from the TPC-C

specification version 5.8.0, page 10)

There are three possible strategies for an efficient H-Store
implementation of TPC-C. First, we could run on a single core,
single CPU machine. This automatically makes every transaction
class single-sited, and each transaction can be run to completion
in a single-threaded environment. The paired-HA site will
achieve the same execution order, since, as will be seen
momentarily, all transaction classes can be made strongly two-
phase, meaning that all transactions will either succeed at both

sites or abort at both sites. Hence, on a single site with a paired
HA site, ACID properties are achieved with no overhead
whatsoever. The other two strategies are for parallel operation on
multi-core and/or multi-CPUs systems. They involve making the
workload either sterile or one-shot, which, as we discussed in the
previous section, are sufficient to allow us to run queries without
conventional concurrency control. To do this, we will need to
perform some trickery with the TPC-C workload; before
describing this, we first address data partitioning.

TPC-C is not a tree-structured schema. The presence of the Item
table as well as the relationship of Order-line with Stock make it a
non-tree schema. The Item table, however, is read-only and can
be replicated at each site. The Order-line table can be partitioned
according to Warehouse to each site. With such replication and
partitioning, the schema is decomposed such that each site has a
subset of the records rooted at a distinct partition of the
warehouses. This will be termed the basic H-Store strategy for
partitioning and replication.

5.1 Query classes
All transaction classes except new_order are already two-phase
since they never need to abort. New_order may need to abort,
since it is possible that its input contains invalid item numbers.
However, it is permissible in the TPC-C specification to run a
query for each item number at the beginning of the transaction to
check for valid item numbers. By rearranging the transaction
logic, all transaction classes become two-phase. It is also true that
all transaction classes are strongly two-phase. This is because the
Item table is never updated, and therefore all new_order
transactions sent to all replicas always reach the same decision of
whether to abort or not.

All 5 transaction classes appear to be sterile when considered with
the basic partitioning and replication strategy. We make three
observations in this regard.

First, the new_order transaction inserts a tuple in both the
Orders table and New_Orders table as well as line items in the
Line_order table. At each site, these operations will be part of a
single sub-plan, and there will be no interleaved operations. This
will ensure that the order_status transaction does not see

Table 1: TPC-C Transaction Classes

new_order Place an order for a customer. 90% of all orders can be
supplied in full by stocks from the customer's “home”
warehouse; 10% need to access stock belonging to a
remote warehouse. Read/write transaction. No
minimum percentage of mix required, but about 50%
of transactions are new_order transactions.

payment Updates the customer’s balance and warehouse/district
sales fields. 85% of updates go to customer’s home
warehouse; 15% to a remote warehouse. Read/write
transaction. Must be at least 43% of transaction mix.

order_

status

Queries the status of a customer’s last order. Read
only. Must be at least 4% of transaction mix.

delivery Select a warehouse, and for each of 10 districts
“deliver” an order, which means removing a record
from the new-order table and updating the customer’s
account balance. Each delivery can be a separate
transaction; Must be at least 4% of transaction mix.

stock_

level

Finds items with a stock level below a threshold; read
only, must read committed data but does not need
serializability. Must be at least 4% of transaction mix.

1156

partially completed new orders. Second, because new_order
and payment transactions in TPC-C are strongly two-phase, no
additional coordination is needed between sites in the event that
one of these transactions updates a “remote” warehouse relative to
the customer making the order or payment.

Third, the stock_level transaction is allowed to run as
multiple transactions which can see stock levels for different
items at different points in time, as long as the stock level results
from committed transactions. Because new_orders are
aborted, if necessary, before they perform any updates, any stock
information read comes from committed transactions (or
transactions that will be committed soon).

Hence, all transaction classes can be made sterile and strongly
two-phase. As such, they achieve a valid execution of TPC-C with
no concurrency control. Although we could have tested this
configuration, we decided to employ additional manipulation of
the workload to also make all transaction classes one-shot, doing
so improves performance.

With the basic strategy, all transaction classes, except
new_order and payment are single-sited, and therefore one-
shot. Payment is already one shot, since there is no need to
exchange data when updating a remote warehouse. New_order,
however, needs to insert in Order-line information about the
district of a stock entry which may reside in a remote site. Since
that field is never updated, and there are no deletes/inserts into the
Stock table, we can vertically partition Stock and replicate the
read-only parts of it across all sites. With this replication trick
added to the basic strategy, new_order becomes one shot.

As a result, with the basic strategy augmented with the tricks
described above, all transaction classes become one-shot and
strongly two-phase. As long as we add a short delay as mentioned
in Section 4.4, ACID properties are achieved with no concurrency
control overhead whatsoever. This is the configuration on which
benchmark results are reported in Section 5.3
It is difficult to imagine that an automatic program could figure
out what is required to make TPC-C either one-shot or sterile.
Hence, a knowledgeable human would have to carefully code the
transactions classes. It is likely, however, that most transaction
classes will be simpler to analyze. As such, it is an open question
how successful automatic transaction class analysis will be.

5.2 Implementation
We implemented a variant of TPC-C on H-Store and on a very
popular commercial RDBMS. The same driver was used for both
systems and generated transactions at the maximum rate without
modeling think time. These transactions were delivered to both
systems using TCP/IP. All transaction classes were implemented
as stored procedures. In H-Store the transaction logic was coded
in C++, with local procedure calls to H-Store query execution. In
contrast, the transaction logic for the commercial system was
written using their proprietary stored procedure language. High
availability and communication with user terminals was not
included for either system.

Both DBMSs were run on a dual-core 2.8GHz CPU computer
system, with 4 Gbytes of main memory and four 250 GB SATA
disk drives. Both DBMSs used horizontal partitioning to
advantage.

5.3 Results
On this configuration, H-Store ran 70,416 TPC-C transactions per
second. In contrast, we could only coax 850 transactions per
second from the commercial system, in spite of several days of
tuning by a professional DBA, who specializes in this vendor’s
product. Hence, H-Store ran a factor of 82 faster (almost two
orders of magnitude).

Per our earlier discussion, the bottleneck for the commercial
system was logging overhead. That system spent about 2/3 of its
total elapsed time inside the logging system. One of us spent
many hours trying to tune the logging system (log to a dedicated
disk, change the size of the group commit; all to no avail). If
logging was turned off completely, and assuming no other
bottleneck creeps up, then throughput would increase to about
2,500 transactions per second.

The next bottleneck appears to be the concurrency control system.
In future experiments, we plan to tease apart the overhead
contributions which result from:
 Redo logging
 Undo logging
 Latching
 Locking

Finally, though we did not implement all of the TPC-C
specification (we did not, for example, model wait times), it is
also instructive to compare our partial TPC-C implementation
with TPC-C performance records on the TPC website2. The
highest performing TPC-C implementation executes about 4
million new-order transactions per minute, or a total of about
133,000 total transactions per second. This is on a 128 core
shared memory machine, so this implementation is getting about
1000 transactions per core. Contrast this with 400 transactions
per core in our benchmark on a commercial system on a (rather
pokey) desktop machine, or 35,000 transactions per core in H-
Store! Also, note that H-Store is within a factor of two of the best
TPC-C results on a machine costing around $1000.00

In summary, the conclusion to be reached is that nearly two orders
of magnitude in performance improvement are available to a
system designed along the lines of H-Store.

6. Some Comments about a “One Size Does
Not Fit All” World
If the results of this paper are to be believed, then we are heading
toward a world with at least 5 (and probably more) specialized
engines and the death of the “one size fits all” legacy systems.
This section considers some of the consequences of such an
architectural shift.

6.1 The Relational Model Is not Necessarily
the Answer
Having survived the great debate of 1974 [Rus74] and the
surrounding arguments between the advocates of the Codasyl and
relational models, we are reluctant to bring up this particular
“sacred cow”. However, it seems appropriate to consider the data
model (or data models) that we build systems around. In the
1970’s the DBMS world contained only business data processing
applications, and Ted Codd’s idea of normalizing data into flat

2 http://www.tcp.org/tpcc/results/tpcc_perf_results.asp

1157

tables has served our community well over the subsequent 30
years. However, there are now other markets, whose needs must
be considered. These include data warehouses, web-oriented
search, real-time analytics, and semi-structured data markets.
We offer the following observations.

1. In the data warehouse market, nearly 100% of all schemas
are stars or snowflakes, containing a central fact table with 1-
n joins to surrounding dimension tables, which may in turn
participate in further 1-n joins to second level dimension
tables, and so forth. Although stars and snowflakes are
easily modeled using relational schemas, in fact, an entity-
relationship model would be simpler in this environment and
more natural. Moreover, warehouse queries would be
simpler in an E-R model. Lastly, warehouse operations that
are incredibly expensive with a relational implementation,
for example changing the key of a row in a dimension table,
might be made faster with some sort of E-R implementation.

2. In the stream processing market, there is a need to:
a. Process streams of messages at high speed
b. Correlate such streams with stored data

To accomplish both tasks, there is widespread enthusiasm for
StreamSQL, a generalization of SQL that allows a
programmer to mix stored tables and streams in the FROM
clause of a SQL statement. This work has evolved from the
pioneering work of the Stanford Stream group [ABW06] and
is being actively discussed for standardization. Of course,
StreamSQL supports relational schemas for both tables and
streams.
However, commercial feeds, such as Reuters, Infodyne, etc.,
have all chosen some data model for their messages to obey.
Some are flat and fit nicely into a relational schema.
However, several are hierarchical, such as the FX feed for
foreign exchange. Stream processing systems, such as
StreamBase and Coral8, currently support only flat
(relational) messages. In such systems, a front-end adaptor
must normalize hierarchical objects into several flat message
types for processing. Unfortunately, it is rather painful to
join the constituent pieces of a source message back together
when processing on multiple parts of a hierarchy is
necessary.

To solve this problem, we expect the stream processing
vendors to move aggressively to hierarchical data models.
Hence, they will assuredly deviate from Ted Codd’s
principles.

3. Text processing obviously has never used a relational model.
4. Any scientific-oriented DBMS, such as ASAP [SBC+07],

will probably implement arrays, not tables as their basic data
type.

5. There has recently been considerable debate over good data
models for semi-structured data. There is certainly fierce
debate over the excessive complexity of XMLSchema
[SC05]. There are fans of using RDF for such data [MM04],
and some who argue that RDF can be efficiently
implemented by a relational column store [AMM+07].
Suffice it to say that there are many ideas on which way to
go in this area.

In summary, the relational model was developed for a “one size
fits all” world. The various specialized systems which we
envision can each rethink what data model would work best for
their particular needs.

6.2 SQL is Not the Answer
SQL is a “one size fits all” language. In an OLTP world one
never asks for the employees who earn more than their managers.
In fact, there are no ad-hoc queries, as noted earlier. Hence, one
can implement a smaller language than SQL. For performance
reasons, stored procedures are omni-present. In a data warehouse
world, one needs a different subset of SQL, since there are
complex ad-hoc queries, but no stored procedures. Hence, the
various storage engines can implement vertical-market specific
languages, which will be simpler than the daunting complexity of
SQL.
Rethinking how many query languages should exist as well as
their complexity will have a huge side benefit. At this point SQL
is a legacy language with many known serious flaws, as noted by
Chris Date two decades ago [Dat84]. Next time around, we can
do a better job.

When rethinking data access languages, we are reminded of a
raging discussion from the 1970’s. On the one-hand, there were
advocates of a data sublanguage, which could be interfaced to any
programming language. This has led to high overhead interfaces,
such as JDBC and ODBC. In addition, these interfaces are very
difficult to use from a conventional programming language.

In contrast, some members of the DBMS community proposed
much nicer embedding of database capabilities in programming
languages, typified in the 1970s by Pascal R [Sch80] and Rigel
[RS79]. Both had clean integration with programming language
facilities, such as control flow, local variables, etc. Chris Date
also proposed an extension to PL/1 with the same purpose
[Dat76].

Obviously none of these languages ever caught on, and the data
sublanguage camp prevailed. The couplings between a
programming language and a data sublanguage that our
community has designed are ugly beyond belief and are low
productivity systems that date from a different era. Hence, we
advocate scrapping sublanguages completely, in favor of much
cleaner language embeddings.

In the programming language community, there has been an
explosion of “little languages” such as Python, Perl, Ruby and
PHP. The idea is that one should use the best language available
for any particular task at hand. Also little languages are attractive
because they are easier to learn than general purpose languages.
From afar, this phenomenon appears to be the death of “one size
fits all” in the programming language world.

Little languages have two very desirable properties. First, they
are mostly open source, and can be altered by the community.
Second they are less daunting to modify than the current general
purpose languages. As such, we are advocates of modifying little
languages to include clean embeddings of DBMS access.

Our current favorite example of this approach is Ruby-on-Rails3.
This system is the little language, Ruby, extended with integrated
support for database access and manipulation through the “model-
view-controller” programming pattern.. Ruby-on-Rails compiles
into standard JDBC, but hides all the complexity of that interface.

Hence, H-Store plans to move from C++ to Ruby-on-Rails as our
stored procedure language. Of course, the language run-time
must be linked into the DBMS address space, and must be altered

3 http://www.rubyonrails.org

1158

to make calls to DBMS services using high performance local
procedure calls, not JDBC.

7. Summary and Future Work
In the last quarter of a century, there has been a dramatic shift in:

1. DBMS markets: from business data processing to a
collection of markets, with varying requirements

2. Necessary features: new requirements include shared
nothing support and high availability

3. Technology: large main memories, the possibility of
hot standbys, and the web change most everything

The result is:

1. The predicted demise of “one size fits all”
2. The inappropriateness of current relational

implementations for any segment of the market
3. The necessity of rethinking both data models and query

languages for the specialized engines, which we expect
to be dominant in the various vertical markets

Our H-Store prototype demonstrates the performance gains that
can be had when this conventional thinking is questioned. Of
course, beyond these encouraging initial performance results,
there are a number of areas where future work is needed. In
particular:

 More work is needed to identify when it is possible to
automatically identify single-sited, two-phase, and one-shot
applications. “Auto-everything” tools that can suggest
partitions that lead to these properties are also essential.

 The rise of multi-core machines suggests that there may be
interesting optimizations related to sharing of work between
logical sites physically co-located on the same machine.

 A careful study of the performance of the various transaction
management strategies outlined in Section 3 is needed.

 A study of the overheads of the various components of a
OLTP system – logging, transaction processing and two-
phase commit, locking, JDBC/ODBC, etc -- would help
identify which aspects of traditional DBMS design contribute
most to the overheads we have observed.

 After stripping out all of these overheads, our H-Store
implementation is now limited by the performance of in-
memory data structures, suggesting that optimizing these
structures will be important. For example, we found that the
simple optimization of representing read-only tables as
arrays offered significant gains in transaction throughput in
our H-Store implementation.

 Integration with data warehousing tools – for example, by
using no-overwrite storage and occasionally dumping records
into a warehouse – will be essential if H-Store-like systems
are to seamlessly co-exist with data warehouses.

In short, the current situation in the DBMS community reminds us
of the period 1970 - 1985 where there was a “group grope” for the
best way to build DBMS engines and dramatic changes in
commercial products and DBMS vendors ensued. The 1970 -
1985 period was a time of intense debate, a myriad of ideas, and
considerable upheaval.
We predict the next fifteen years will have the same feel.

References
[ABW06] A. Arasu, S. Babu, and J. Widom. “The CQL
Continuous Query Language: Semantic Foundations and Query
Execution.” The VLDB Journal, 15(2), June 2006.

[ACL87] Agrawal, R., Carey, M. J., and Livny, M. “Concurrency
control performance modeling: alternatives and implications.”
ACM Trans. Database Syst. 12(4), Nov. 1987.

[AMM+07] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach.
“Scalable Semantic Web Data Management Using Vertical
Partitioning.” In Proc. VLDB, 2007.

[Ants07] ANTs Software. ANTs Data Server - Technical White
Paper, http://www.ants.com, 2007.
[BSR80] Bernstein, P.A., Shipman, D., and Rothnie, J. B.
“Concurrency Control in a System for Distributed Databases
(SDD-1).” ACM Trans. Database Syst. 5(1), March 1980.

[Bon02] P. A. Boncz. “Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications.” Ph.D. Thesis, Universiteit van
Amsterdam, Amsterdam, The Netherlands, May 2002.

[Dat76] C. J. Date. “An Architecture for High-Level Language
Database Extensions.” In Proc. SIGMOD, 1976.
[Dat84] Date, C. J. “A critique of the SQL database language.” In
SIGMOD Record 14(3):8-54, Nov. 1984.
[DGS+90] Dewitt, D. J., Ghandeharizadeh, S., Schneider, D. A.,
Bricker, A., Hsiao, H., and Rasmussen, R. “The Gamma Database
Machine Project.” IEEE Transactions on Knowledge and Data
Engineering 2(1):44-62, March 1990.

[Hel07] P. Helland. “Life beyond Distributed Transactions: an
Apostate's Opinion.” In Proc. CIDR, 2007.
[HM93] Herlihy, M. and Moss, J. E. “Transactional memory:
architectural support for lock-free data structures.” In Proc. ISCA,
1993.
[KL81] Kung, H. T. and Robinson, J. T. “On optimistic methods
for concurrency control.” ACM Trans. Database Syst. 6(2):213-
226, June 1981.
[LM06] E. Lau and S. Madden. “An Integrated Approach to
Recovery and High Availability in an Updatable, Distributed Data
Warehouse.” In Proc. VLDB, 2006.

[MHL+92] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and
Schwarz, P. “ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging.” ACM Trans. Database Syst. 17(1):94-162, March 1992.

[Mil89] Mills, D. L. “On the Accuracy and Stability of Clocks
Synchronized by the Network Time Protocol in the Internet
System.” SIGCOMM Comput. Commun. Rev. 20(1):65-75, Dec.
1989.

[MM04] Manola, F. and Miller, E. (eds). RDF Primer. W3C
Specification, February 10, 2004. http://www.w3.org/TR/REC-
rdf-primer-20040210/

[RR99] Rao, J. and Ross, K. A. “Cache Conscious Indexing for
Decision-Support in Main Memory.” In Proc. VLDB, 1999.

[RR00] Rao, J. and Ross, K. A. “Making B+- trees cache
conscious in main memory.” In SIGMOD Record, 29(2):475-486,
June 2000.

[RS79] L. A. Rowe and K. A. Shoens. “Data Abstractions, Views
and Updates in RIGEL.” In Proc. SIGMOD, 1979.

1159

[Rus74] Randall Rustin (Ed.): Proceedings of 1974 ACM-
SIGMOD Workshop on Data Description, Access and Control,
Ann Arbor, Michigan, May 1-3, 1974, 2 Volumes.

[SAB+05] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M.
Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P.
O’Neil, A. Rasin, N. Tran, and S. Zdonik. “C-Store: A Column-
oriented DBMS.” In Proc. VLDB, 2005.

[SBC+07] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack,
T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S.
Zdonik. “One Size Fits All? - Part 2: Benchmarking Results.” In
Proc. CIDR, 2007.

[SC05] M. Stonebraker and U. Cetintemel. “One Size Fits All: An
Idea whose Time has Come and Gone.” In Proc. ICDE, 2005.

[Sch80] Schmidt, J.W. et al. “Pascal/R Report.” U Hamburg,
Fachbereich Informatik, Report 66, Jan 1980.

[TPCC] The Transaction Processing Council. TPC-C Benchmark
(Revision 5.8.0), 2006.
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

1160

